Exponential Enclosures for the Verified Simulation of Fractional-Order Differential Equations
نویسندگان
چکیده
Fractional-order differential equations are powerful tools for the representation of dynamic systems that exhibit long-term memory effects. The verified simulation such system models with help interval allows computation guaranteed enclosures domains reachable pseudo states over a certain finite time horizon. In previous work author, an iteration scheme—derived on basis Picard iteration—was published makes use Mittag-Leffler functions to determine pseudo-state enclosures. this paper, corresponding is generalized toward exponential during evaluation scheme. Such well-known from solution integer-order sets equations. aim demonstrate instead pure box-type does not only improve tightness computed but also reduces required computational effort. These statements demonstrated close-to-life model charging/discharging dynamics Lithium-ion batteries.
منابع مشابه
Computational Method for Fractional-Order Stochastic Delay Differential Equations
Dynamic systems in many branches of science and industry are often perturbed by various types of environmental noise. Analysis of this class of models are very popular among researchers. In this paper, we present a method for approximating solution of fractional-order stochastic delay differential equations driven by Brownian motion. The fractional derivatives are considered in the Caputo sense...
متن کاملTheory of Hybrid Fractional Differential Equations with Complex Order
We develop the theory of hybrid fractional differential equations with the complex order $thetain mathbb{C}$, $theta=m+ialpha$, $0<mleq 1$, $alphain mathbb{R}$, in Caputo sense. Using Dhage's type fixed point theorem for the product of abstract nonlinear operators in Banach algebra; one of the operators is $mathfrak{D}$- Lipschitzian and the other one is completely continuous, we prove the exis...
متن کاملApplication of the Lie Symmetry Analysis for second-order fractional differential equations
Obtaining analytical or numerical solution of fractional differential equations is one of the troublesome and challenging issue among mathematicians and engineers, specifically in recent years. The purpose of this paper Lie Symmetry method is developed to solve second-order fractional differential equations, based on conformable fractional derivative. Some numerical examples are presented to il...
متن کاملAn exponential spline for solving the fractional riccati differential equation
In this Article, proposes an approximation for the solution of the Riccati equation based on the use of exponential spline functions. Then the exponential spline equations are obtained and the differential equation of the fractional Riccati is discretized. The effect of performing this mathematical operation is obtained from an algebraic system of equations. To illustrate the benefits of the me...
متن کاملHYBRID OF RATIONALIZED HAAR FUNCTIONS METHOD FOR SOLVING DIFFERENTIAL EQUATIONS OF FRACTIONAL ORDER
Abstract. In this paper, we implement numerical solution of differential equations of frac- tional order based on hybrid functions consisting of block-pulse function and rationalized Haar functions. For this purpose, the properties of hybrid of rationalized Haar functions are presented. In addition, the operational matrix of the fractional integration is obtained and is utilized to convert compu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2022
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract6100567